Daniel Franco-Barranco

Postdoctoral Scientist

About Me

Daniel Franco-Barranco is a dedicated researcher specializing in biomedical image processing and computer vision, with a primary focus on the development of deep learning solutions for the segmentation of organelles in large-scale and multimodal electron microscopy images.

He earned his Ph.D. in Computer Science from the University of the Basque Country (UPV/EHU) under the mentorship of Professors Prof. Ignacio Arganda-Carreras and Prof. Arrate Muñoz-Barrutia. During his doctoral studies, he also worked as an HPC Resources Technician at the Donostia International Physics Center (DIPC), where he managed and configured the largest computational cluster in the Basque Country.

In 2022, Daniel completed a six-month research internship at Harvard University, supervised by Professors Donglai Wei and Hanspeter Pfister.

Currently, he is a Postdoctoral Scientist in Dr. Albert Cardona’s group at the MRC Laboratory of Molecular Biology (LMB). His research focuses on developing automated techniques for mapping connectomes from volumetric electron microscopy data. This work aims to elucidate the neuronal basis of behavior by comparing connectomes across experimental conditions, developmental stages, and species. Daniel’s role involves designing novel machine learning approaches for computer vision, applying these methods at scale across multiple brain volumes, and contributing to the scientific community through presentations, publications, and the mentorship of junior researchers.

Experience

2024 - present

Postdoctoral Scientist in Cardona’s lab at MRC Laboratory of Molecular Biology (LMB)

2019 - 2024 (4 years, 11 months)

PhD at University of the Basque Country (UPV/EHU)

2015 - 2024 (9 years, 1 month)

HPC Resources Technician at Donostia International Physics Center (DIPC)

2022 (6 months)

PhD Intern at Harvard, advised by Prof. Donglai Wei and Prof. Hanspeter Pfister

2018 - 2019 (1 year)

Master’s degree in Computational Engineering and Intelligent Systems

2011 - 2015 (4 years)

Bachelor’s degree in Computer Engineering

2014 (6 months)

Company practices at Donostia International Physics Center (DIPC)

Publications

2024

Nature Machine Intelligence

A deep learning method that identifies cellular heterogeneity using nanoscale nuclear features

Davide Carnevali, Limei Zhong, Esther González-Almela, Carlotta Viana, Mikhail Rotkevich, Aiping Wang, Daniel Franco-Barranco, Aitor Gonzalez-Marfil, Maria Victoria Neguembor, Alvaro Castells-Garcia, Ignacio Arganda-Carreras, Maria Pia Cosma

Nature BibTeX

2024

IEEE ISBI

Self-supervised Vision Transformers for image-to-image labeling: a BiaPy solution to the LightMyCells Challenge

Daniel Franco-Barranco, Aitor González-Marfil, Ignacio Arganda-Carreras

ISBI 2024 BibTeX PDF Code

2024

bioRxiv

BiaPy: Accessible deep learning on bioimages

Daniel Franco-Barranco, Jesús A Andrés-San Román, Ivan Hidalgo-Cenalmor, Lenka Backová, Aitor González-Marfil, Clément Caporal, Anatole Chessel, Pedro Gómez-Gálvez, Luis M Escudero, Donglai Wei, Arrate Muñoz-Barrutia, Ignacio Arganda-Carreras

bioRxiv BibTeX PDF Code

2023

A&A

Characterizing Structure Formation through Instance Segmentation

Daniel López-Cano, Jens Stücker, Marcos Pellejero Ibañez, Raúl E. Angulo, Daniel Franco-Barranco

A&A BibTeX PDF Code

2023

IEEE ISBI

Modeling Wound Healing Using Vector Quantized Variational Autoencoders and Transformers

Lenka Backová, Guillermo Bengoetxea, Svana Rogalla, Daniel Franco-Barranco, Jérôme Solon, Ignacio Arganda-Carreras

IEEE ISBI BibTeX PDF Code

2023

IEEE ISBI

BiaPy: a ready-to-use library for Bioimage Analysis Pipelines

Daniel Franco-Barranco, Jesús A Andrés-San Román, Pedro Gómez-Gálvez, Luis M Escudero, Arrate Muñoz-Barrutia, Ignacio Arganda-Carreras

IEEE ISBI BibTeX PDF Code

2023

IEEE TMI

Current Progress and Challenges in Large-scale 3D Mitochondria Instance Segmentation

Daniel Franco-Barranco, Zudi Lin, Won-Dong Jang, Xueying Wang, Qijia Shen, Wenjie Yin, Yutian Fan, Mingxing Li, Chang Chen, Zhiwei Xiong, Rui Xin, Hao Liu, Huai Chen, Zhili Li, Jie Zhao, Xuejin Chen, Constantin Pape, Ryan Conrad, Jozefus De Folter, Luke Nightingale, Martin Jones, Yanling Liu, Dorsa Ziaei, Stephan Huschauer, Ignacio Arganda-Carreras, Hanspeter Pfister, Donglai Wei

TMI BibTeX PDF Code

2023

Cell Reports Methods

CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia

Jesús A. Andrés-San Román, Carmen Gordillo-Vazquez, Daniel Franco-Barranco, Laura Morato, Antonio Tagua, Pablo Vicente-Munuera, Ana M. Palacios, Maria P. Gavilan, Valentina Annese, Pedro Gómez-Gálvez, Ignacio Arganda-Carreras, Luis M. Escudero

Cell Reports Methods BibTeX PDF Code

2022

CMPB

Deep learning based domain adaptation for mitochondria segmentation on EM volumes

Daniel Franco-Barranco, Julio Pastor-Tronch, Aitor González-Marfil, Arrate Muñoz-Barrutia, Ignacio Arganda-Carreras

CMPB BibTeX PDF Sup. material Code

2022

Cell Systems

A quantitative biophysical principle to explain the 3D cellular connectivity in curved epithelia

Pedro Gómez-Gálvez, Pablo Vicente-Munuera, Samira Anbari, Antonio Tagua, Carmen Gordillo-Vázquez, Jesús A. Andrés-San Román, Daniel Franco-Barranco, Ana M. Palacios, Antonio Velasco, Carlos Capitán-Agudo, Clara Grima, Valentina Annese, Ignacio Arganda-Carreras, Rafael Robles, Alberto Márquez, Javier Buceta, Luis M. Escudero

Cell Systems BibTeX PDF Code

2021

Computer Methods and Programs
in Biomedicine

Building a Bioimage Analysis Workflow using Deep Learning

Estibaliz Gómez-de-Mariscal, Daniel Franco-Barranco, Arrate Muñoz-Barrutia, Ignacio Arganda-Carreras

Book Github

2021

Neuroinformatics

Stable deep neural network architectures for mitochondria segmentation on electron microscopy volumes

Daniel Franco-Barranco, Arrate Muñoz-Barrutia, Ignacio Arganda-Carreras

Neuroinformatics BibTeX PDF Code

2020

MICCAI

MitoEM Dataset: Large-scale 3D Mitochondria Instance Segmentation from EM Images

Donglai Wei, Zudi Lin, Daniel Franco-Barranco, Nils Wendt, Xingyu Liu, Wenjie Yin, Xin Huang, Aarush Gupta, Won-Dong Jang, Xueying Wang, Ignacio Arganda-Carreras, Jeff W. Lichtman, Hanspeter Pfister

PDF BibTeX Code